$$\begin{bmatrix} 1 \\ -4 \end{bmatrix} + \begin{bmatrix} 5 \\ -4 \end{bmatrix}$$

$$\frac{X+8}{X-6}$$

DBM20153-DISCRETE MATHEMATICS

Chapter 1

X -4

 $\frac{1}{(\sqrt{x-2})^2}$

x+8 x-6

CHAPTER 1: SETS, RELATIONS AND FUNCTIONS

- 1.1 Explain sets
- 1.1.1 Use set notation and operation on sets:
 - a)Union
 - b)Intersection
 - c)Disjoint
 - d)Difference
 - e)Complement
 - f)Symmetric Difference

CHAPTER 1: SETS, RELATIONS AND FUNCTIONS

- 1.2 Explain relations
 - 1.2.1 Explain properties of relations
 - 1.2.2 Explain equivalence relation:
 - a) Reflexive
 - b) Symmetric
 - c)Transitive

BASIC TERMINOLOGY OF SETS AND STANDARD NOTATION IN SETS

- A set is an unordered collection of objects.
- The *objectin* a set are called the elements or *members* of the set.
- Capital letters like A, B, X, Y, are used to denote sets and lowercase letters a, b, x, y, are used to denote elements of sets.

- The statement "p is an element of A" or equivalently "p belongs to A" is written $p \in A$.
- • The statement "p is not an element of A" that is the negation of $p \in A$ is written $p \notin A$.

BASIC TERMINOLOGY OF SETS AND STANDARD NOTATION IN SETS

EQUAL SETS

- If and only if their number of elements and the member of elements are exactly same.
- The order of elements and the repetition of elements does not have any relevance here.

Example:

A =
$$\{5,6,7\}$$
,
B = $\{7,5,6\}$,
C = $\{5,5,6,6,7,7\}$

Here, all the three sets, set A, set B and set C are equal.

SPECIAL SYMBOLS FOR SETS

```
N = the set of positive integers : 1, 2, 3, ....
```

Z = the set of **integers** :, -2, -1, 0, 1, 2,

Q = the set of **rational numbers**

R = the set of real numbers

C = the set of complex numbers

List the members of these sets.

- a) $\{x \mid x \text{ is real number such that } x^2 = 1\}$
- b) $\{x \mid x \text{ is a positive integer less than } 12\}$
- c) $\{x \mid x \text{ is the square of an integer and } x < 100\}$
- d) $\{x \mid x \text{ is an integer such that } x^2 = 2\}$
- e) $\{x: x \in \mathbb{N}, x \text{ is odd number }, x < 15\}, \text{ where } \mathbb{N} = \{1, 2, 3...\}$

- a) $\{-1, 1\}$
- b) {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11}
- c) {0, 1, 4, 9, 16, 25, 36, 49, 64, 81}
- d) Ø (empty set which means no element)
- e) {1, 3, 5, 7, 9, 11, 13}

Determine whether each of these pairs of sets are equal.

- a) $\{1, 3, 3, 3, 5, 5, 5, 5, 5, 5\}$, $\{5, 3, 1\}$
- b) {{1}, {1, {1}}}

- a) Yes
- b) No

EVERPIDE H

1.List the elements of the following sets; here $N = \{1, 2, 3...\}$.

- a) $A = \{ x : x \in \mathbb{N}, 3 < x < 10 \}$
- b) $B = \{x : x \in \mathbb{N}, x \text{ is even number, } x < 15 \}$
- c) $C = \{x : x \in \mathbb{N}, 4 + x = 7\}$
- d) $D = \{x : x \in \mathbb{N}, x \text{ is odd number, } x < 20 \}$
- e) $E = \{x : x \in \mathbb{N}, x \text{ is a factor of } 20, x \le 20 \}$
- **2**. Given the universal set $U = \{x : 15 \le x \le 26, x \text{ is an integer}\}$,

 $M = \{x : x \text{ is a prime number}\};$

 $N = \{x : x \text{ is a multiple of 3}\};$

 $O = \{x: x \text{ is an even number}\}$

- a) List the elements of set M, N and O.
- b) List the elements of set N' and O'.
- c) State the value of n (N) and n (O).

LALINGIOL A GOITI...

3. List the element of the following sets:

- a) $\{x: x \in \mathbb{N}, 5 < x < 12\}, \text{ where } \mathbb{N} = \{1, 2, 3...\}$
- b) $\{x: x \in \mathbb{N}, x \text{ is even, } x < 15\}, \text{ where } \mathbb{N} = \{1, 2, 3...\}$
- c) $\{x: x \in \mathbb{N}, 10 < x < 35, x \text{ with sum of digits less than 6} \}$ where $\mathbb{N} = \{1, 2, 3...\}$

4. Given that the universal set.

 $\xi = \{x : x \text{ is an integer, } 1 \le x \le 10\}$ $P = \{x : x \text{ is an odd number}\}$ $Q = \{x : x \text{ is a factor of } 12\}$

- a) List the element of set P and set Q
- b) State the value of n(P) and n(Q)

LALINGIGE A GGITI...

5. List all the elements of the following sets:

- a) A= {x: x is a letter in the word MATHEMATICS}
- b) B= {x: x is a month of a year not having 31 days}
- c) C= {x: x is a letter before e in the English alphabet}
- d) D= {x: x is a vowel in the word "EQUATION"}

6. Determine whether each pair of sets is equal or not

- a) {1, 2, 2, 4}, {1, 2, 4}
- b) {1, 1, 3}, {3, 3, 1}
- c) $\{x \mid x^2 + x = 2\}, \{1, -1\}$
- d) $\{x \mid x \in \mathbb{R} \text{ and } 0 < x \le 2\}, \{1, 2\}$

VENN DIAGRAM, UNIVERSAL SET, EMPTY SET & SUBSETS

- The Universal Set is the set which contains all the element or objects of other sets, including its own elements.
- It is often shown using the symbol \mathbf{U} or $\boldsymbol{\xi}$
- In the Venn Diagram, the Universal Sets is indicated by a rectangle around the sets.

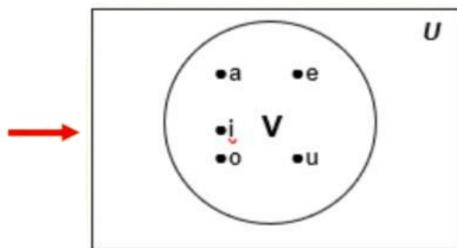
- Inside this rectangle, circles or other geometrical figures are used to represent sets.
- Sometimes points are used to represent the particular elements of the set.

VENN DIAGRAM, UNIVERSAL SET, EMPTY SET & SUBSETS

Example of Venn diagram:

Example 1

The set of vowels, V in the English alphabet.



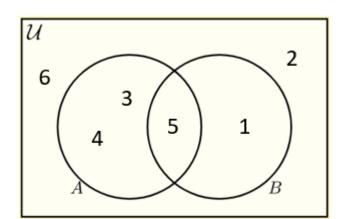
Example 2

Given:

$$U = \{1, 2, 3, 4, 5, 6\}$$

$$A = \{3, 4, 5\}$$

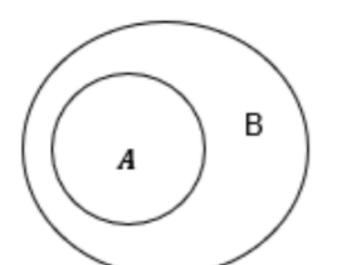
$$B = \{1, 5\}$$



VENN DIAGRAM, UNIVERSAL SET, EMPTY SET & SUBSETS

• The set A is said to be a *subset* of B if and only if every element of A is also an element of B. We use the notation $A \subseteq B$ or $B \supseteq A$ to indicate that A is a subset of the set B.

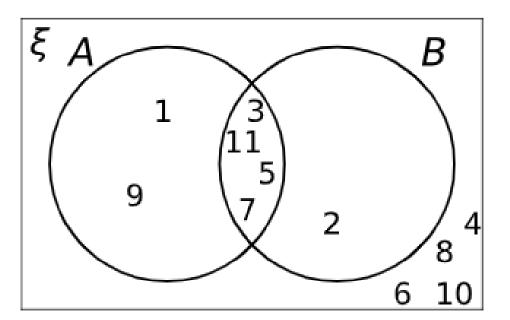
U



- If A is not a subset of B, if at least one element of A does not belong to B, we write $A \nsubseteq B$ or $B \not\supseteq A$.
- Empty set is a special set that has no elements. Notation: Ø or { }.

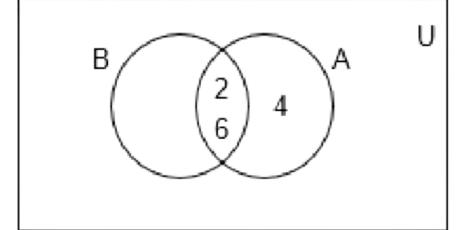
(a) Suppose that $\xi = \{1,2,3,4,5,6,7,8,9,10,11\}$, Put the odd number in A and prime number in B. Draw a Venn diagram for this information.

$$A = \{1,3,5,7,9,11\}, \qquad B = \{2,3,5,7,11\}$$



- (a) Suppose that A = 2, 4, 6, B = 2, 6, C = 4, 6 and D = 4, 6, 8. Determine which of these sets are subsets of which other of these sets.
- (b) Draw a Venn diagram to illustrate the relationship $B \subseteq A$ by using the question above.

- a) $B \subseteq A$; $C \subseteq D$
- b)



Determine whether each of these statements is true or false.

- a) $0 \in \emptyset$
- b) $\emptyset \in \{0\}$
- c) $x \in \{x\}$
- d) $\{x\} \subseteq \{x\}$

- a) False
- b) False
- c) True
- d) True

EXERCISE B

1. Consider the following sets:

$$\emptyset$$
, $A = \{1\}$, $B = \{1, 3\}$, $C = \{1, 5, 9\}$, $D = \{1, 2, 3, 4, 5\}$, $E = \{1, 3, 5, 7, 9\}$, $U = \{1, 2, ..., 8, 9\}$

Insert the correct symbol \subseteq or \nsubseteq between each pair of set.

- a) Ø, A b) A, B c) B, C d) B, E

- e) C, D f) C, E g) D, E h) D, U

2. Use a Venn Diagram to illustrate the relationship

- i. $A \subseteq B$ and $B \subseteq C$
- ii. $A \subseteq D$ and $D \subseteq U$

EXERCISE B CONT...

3. The universal set,

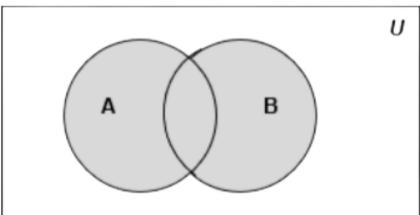
```
U = \{x: 10 < x < 35, x \text{ is an integer}\},
F = \{x: x \text{ is a prime number}\},
G = \{x: x \text{ is a multiple of 3}\}
H = \{x: x < 20\}.
```

- a) List all the elements of set F, G and H.
- b) Draw the Venn diagram to represent all elements of $\mathbf{F} \cup \mathbf{G} \cup \mathbf{H}$ in the universal set.
- c) Find $n(F \cap H)$

UNION OF THE SETS A AND B

- Denoted by $A \cup B$
- Definition: the set that contains
 those elements that are either in *A* or in *B*, or in both.

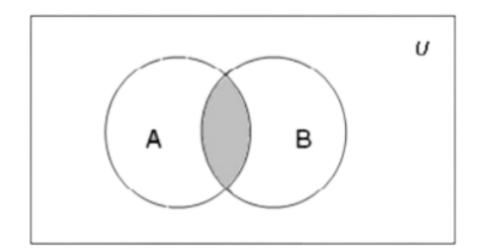
$$A \cup B = \{x : x \in A \text{ or } x \in B\}$$



INTERSECTION OF THE SETS A AND B

- Denoted by $A \cap B$
- Definition: containing those elements in both *A* and *B*.

$$A \cap B = \{x : x \in A \text{ and } x \in B\}$$



DISJOINT OF TWO SETS

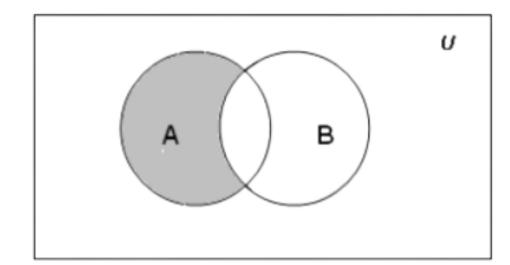
- Two sets are called **disjoint** if their intersection is the empty set.
- Example:

 $A = \{1, 3, 5, 7, 9\}$ and $B = \{2, 4, 6, 8, 10\}$. Because $A \cap B = \emptyset$, A and B are disjoint.

DIFFERENCE OF A AND B

- Denoted by A B or $A \setminus B$
- Definition: the set containing those elements that are in *A* but not in *B*.

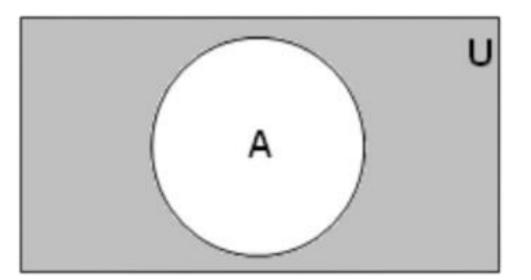
$$A - B \text{ or } A \setminus B = \{x : x \in A, x \notin B\}$$



COMPLEMENT OF SET A

- Denoted by A^c or \overline{A} or A'.
- Definition: the *complement* of *A* with respect to *U* (universal set).

$$A^c = \{x : x \in U, x \notin A\}$$

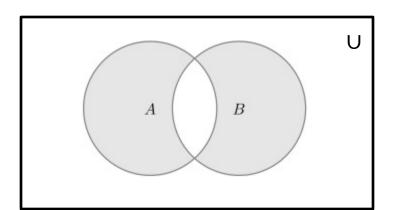


h.,

SYMMETRIC DIFFERENCE

- The **symmetric difference** of A and B, denoted by $A \oplus B$, is the set containing those elements in either A or B, but not in both A and B.
- Example:

 $A = \{1, 3, 5, 7, 9\}$ and $B = \{3, 4, 5, 6, 7\}$. Hence $A \oplus B$ are $\{1,4,6,9\}$.



SET IDENTITIES

Identity	Name
$A \cup \emptyset = A$ $A \cap U = A$	Identity laws
$A \cup U = U$ $A \cap \emptyset = \emptyset$	Domination laws
$A \cup A = A$ $A \cap A = A$	Idempotent laws
$\overline{(\overline{A})} = A$	Complementation law
$A \cup B = B \cup A$ $A \cap B = B \cap A$	Commutative laws
$A \cup (B \cup C) = (A \cup B) \cup C$ $A \cap (B \cap C) = (A \cap B) \cap C$	Associative laws
$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$ $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$	Distributive laws
$\overline{\frac{A \cup B}{A \cap B}} = \overline{A} \cap \overline{B}$ $\overline{A \cap B} = \overline{A} \cup \overline{B}$	De Morgan's laws
$A \cup (A \cap B) = A$ $A \cap (A \cup B) = A$	Absorption laws
$A \cup \overline{A} = U$ $A \cap \overline{A} = \emptyset$	Complement laws

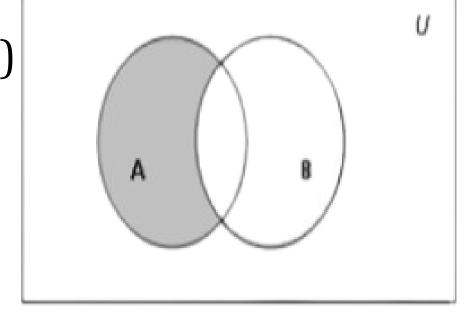
- 1. Let A = 1, 2, 3, 4, 5 and B = 0, 3, 6. Find:
 - a) *A* ∪ *B*
 - b) $A \cap B$
 - c) A B
 - d) $B \setminus A$
 - e) *A* ⊕ *B*
- 2. Draw the Venn Diagram for each of these combinations of sets *A* and *B*.
 - a) $A \cap B^{c}$
 - b) $(B \setminus A)^c$

SOLUTION

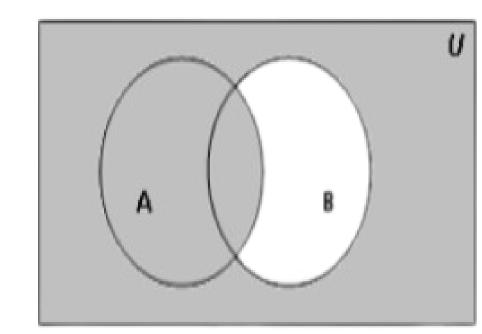
1.

- a) {0, 1, 2, 3, 4, 5, 6}
- b) {3}
- c) {1, 2, 4, 5}
- d) {0, 6}
- e) {0,1,2,4,5,6}

2.a)



b)



List the members of these sets.

- a) $\{x \mid a \text{ is real number such that } x^2 = 1\}$
- b) $\{x \mid x \text{ is a positive integer less than } 12\}$
- c) $\{x \mid x \text{ is the square of an integer and } x < 100\}$
- d) $\{x \mid x \text{ is an integer such that } x^2 = 2\}$

- a) $\{-1, 1\}$
- b) {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11}
- c) {0, 1, 4, 9, 16, 25, 36, 49, 64, 81}
- d) Ø (empty set which means no element)

EXERCISE C

- 1. Given $A = \{1, 2, 3, 4, 5\}$, $B = \{4, 5, 6, 7\}$, $C = \{5, 6, 7, 8, 9\}$, $D = \{1, 3, 5, 9\}$ 7, 9}, $E = \{2, 4, 6, 8\}$, $F = \{1, 5, 9\}$. Find:
 - a) $A \cup B$ e) $C \cup F$
 - b) $B \cap D$ f) E B
 - c) $D \cap E$ g) $D \setminus A$

 $d)F\setminus A$

- h) B⊕ *C*
- 2. Let $A = \{a, b, c, d, e\}$ and $B = \{a, b, c, d, e, f, g, h\}$. Find:
 - a) $A \cup B$
 - b) $A \cap B$
 - c) A B
 - d) $B \oplus A$

EXEKLIDE 6 6UNI...

- 3. Given $U = \{1,2,3,4,5,6,7,8,9\}, A = \{2,4,6,8\}, B = \{1,3,4,5,7\}, C = \{7,8\}$
- a) $A \cap B$
- *b)* B'
- c) A' \cup B'
- d) n(A B)
- e)(A-C)'
- f) $(A \cap C) \cap (A \cup B)$
- 4. Given $A = \{x: x \text{ is an integer and } -3 \le x < 7\}$ and $B = \{x: x \text{ is a natural number less than 6}\}$
- a) List all the elements of the set A and B
- b) Find $A \oplus B$

RELATIONS

BINARY RELATION

- Definition: relationships between the elements of two sets.
- A binary relation from *A* to *B* is a set *R* of ordered pairs where the first element of each ordered pairs comes from *A* and the second elements come from *B*.

IMPORTANT

Notation form:

*a **R** b (a is R-related to b)

*a **R** b (a is not R-related to b)

Domain: all first elements of the ordered pairs which belong to R

Range: the set of second elements in **R**

Let A=(1,2,3) and B=(x,y,z) and let $R=\{(1,y),(1,z),(3,y)\}$. Define the relation given in notation form. State the domain and range.

Solution:

1 **R** y, 1 **R** z, 3 **R** y

1 R x, 2 R x, 2 R y

2 **K** z, 3 **K** x, 3 **K** z

Domain={1,3}

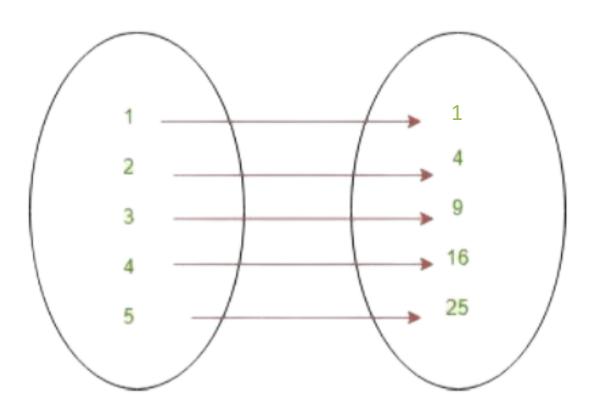
Range={y,z}

RELATION REPRESENTATION

1. GRAPHICALLY/ ARROW DIAGRAM

Example:

 $R = \{(1, 1), (2, 4), (3, 9), (4, 16), (5, 25)\}$



RELATION REPRESENTATION

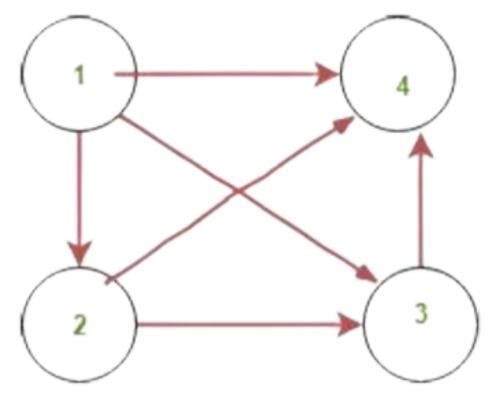
2. DIGRAPH (DIRECTED GRAPH)

- It consists of set 'V' of vertices and with the edges 'E'. Here E is represented by ordered pair of Vertices.
- In the edge (a, b), a is the initial vertex and b is the final vertex.
- If edge is (a, a) then this is regarded as loop.

Example:

 $R = \{(1,2), (1,3), (1,4), (2,3), (2,4), (3,4)\}$

Digraph:



RELATION REPRESENTATION

3. MATRICES

- The relation R is represented by the matrix $MR = [m_{ij}]$.
- The matrix representing R has a 1 as its (i,j) entry when ai is related to b_j and a 0 if ai is not related to b_j

Example:

Suppose that $A = \{1,2,3\}$ and $B = \{1,2\}$.

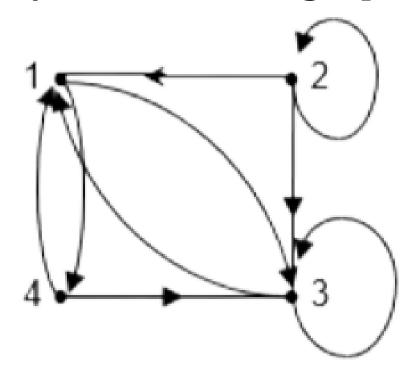
$$R = \{(2, 1), (3,1), (3,2)\}$$

In matrix form;

$$M_{\underline{R}} = \begin{bmatrix} 0 & 0 \\ 1 & 0 \\ 1 & 1 \end{bmatrix}$$

EXERCISE D

1. What are the ordered pairs in the relation R represented by the directed graph shown below?



- 2. Draw a directed graph (Digraph) for the relation
 - a) $R = \{ (1,1), (1,3), (2,1), (2,3), (2,4), (3,1), (3,2), (4,1) \}$ on the set $\{1, 2, 3, 4\}$
 - b) $R = \{ (a,b), (a,a), (b,b), (b,c), (c,c), (c,b), (c,a) \}$ on the set $\{a,b,c\}$

EXERCISE D CONT...

3. **List** and display all the relation **graphically** the ordered pairs in the relation R from $A = \{0, 1, 2, 3, 4\}$ to $B = \{0, 1, 2, 3\}$ where $(a, b) \in R$ if and only if

- a) a = b
- b) a + b = 4
- c) a > b
- d) a divides b (a | b) (*it means b / a)

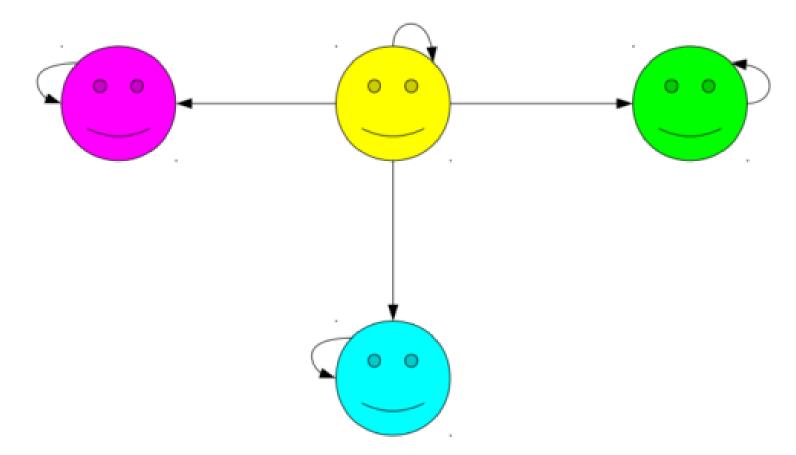
State the **domain and range** for all the questions above.

THE PROPERTIES OF RELATIONS IN DIRECTED GRAPH

- A relation R is reflexive if there is loop at every node of directed graph.
- A relation R is irreflexive if there is no loop at any node of directed graphs.
- A relation R is symmetric if for every edge between distinct nodes, an edge is always present in opposite direction.
- A relation R is antisymmetric if there are never two edges in opposite direction between distinct nodes.
- A relation R is transitive if there is an edge from a to b and b to c, then there is always an edge from a to c.

REFLEXIVE

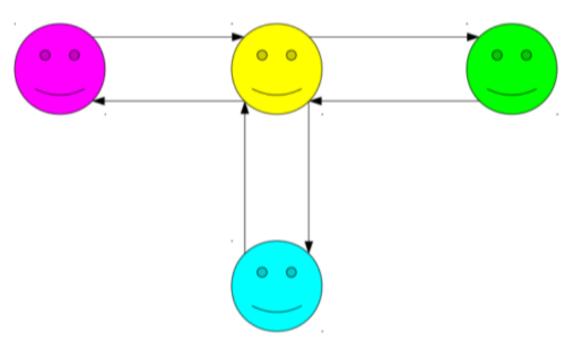
- A binary relation R over a set A is called reflexive iff For any $x \in A$, we have xRx.
- Look at the picture below;



• We have loop at every node of directed graph. Therefore, it is reflexive.

SYMMETRIC

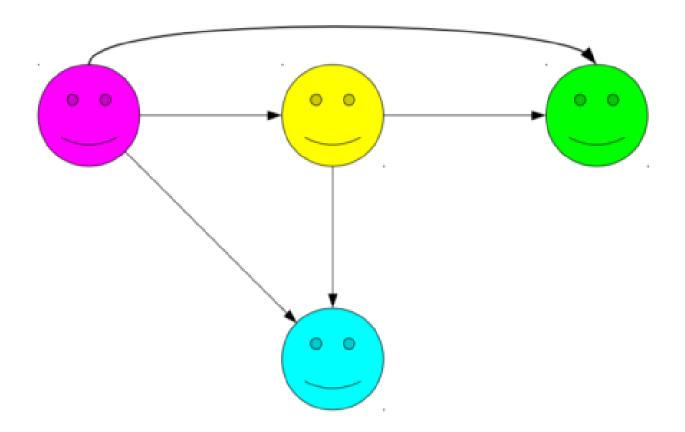
- A binary relation R over a set A is called symmetric iff For any $x \in A$ and $y \in A$, if xRy, then yRx.
- Look at the picture below;



• We have two edges with opposite direction for each nodes. Therefore, it is symmetric.

TRANSITIVE

- A binary relation R over a set A is called transitive iff For any x, y, $z \in A$, if xRy and yRz, then xRz.
- Look at the picture below;



```
Consider the following relations on \{1, 2, 3, 4\}: R_1 = \{(1,1), (1,2), (2,1), (2,2), (3,4), (4,1), (4,4)\}; R_2 = \{(1,1), (1,2), (2,1)\} R_3 = \{(1,1), (1,2), (1,4), (2,1), (2,2), (3,3), (4,1), (4,4)\}; R_4 = \{(2,1), (3,1), (3,2), (4,1), (4,2), (4,3)\} R_5 = \{(1,1), (1,2), (1,3), (1,4), (2,2), (2,3), (2,4), (3,3), (3,4), (4,4)\}; R_6 = \{(3,4)\}
```

Which of these relations are reflexive?

Solution:

The relations R_3 and R_5 are reflexive because they both contain all pairs of the form a, a, namely (1,1), (2,2), (3,3), (4,4).

Consider the following relations on 1, 2, 3, 4: $R_1 = \{(1,1), (1,2), (2,1), (2,2), (3,4), (4,1), (4,4)\};$ $R_2 = \{(1,1), (1,2), (2,1)\}$ $R_3 = \{(1,1), (1,2), (1,4), (2,1), (2,2), (3,3), (4,1), (4,4);$ $R_4 = \{(2,1), (3,1), (3,2), (4,1), (4,2), (4,3)\}$ $R_5 = \{(1,1), (1,2), (1,3), (1,4), (2,2), (2,3), (2,4), (3,3), (3,4), (4,4)\};$ $R_6 = \{(3,4)\}$

Which of these relations are symmetric, not symmetric or antisymmetric?

Solution:

The relations R_2 and R_3 are symmetric. The relations R_1 are not symmetric. The relations R_4 , R_5 and R_6 are antisymmetric.

Consider the following relations on 1, 2, 3, 4:

```
R_1 = \{(1,1), (1,2), (2,1), (2,2), (3,4), (4,1), (4,4)\}; R_2 = \{(1,1), (1,2), (2,1)\} R_3 = \{(1,1), (1,2), (1,4), (2,1), (2,2), (3,3), (4,1), (4,4)\}; R_4 = \{(2,1), (3,1), (3,2), (4,1), (4,2), (4,3)\} R_5 = \{(1,1), (1,2), (1,3), (1,4), (2,2), (2,3), (2,4), (3,3), (3,4), (4,4)\}; R_6 = \{3,4\}
```

Which of these relations are transitive?

Solution:

The relations R_4 , R_5 and R_6 are transitive.

Not transitive:

 R_1 because there's (4,1) & (1,2) but there's no (4,2)

 R_2 because there's (2,1) & (1,2) but there's no (2,2)

 R_3 because there's (4,1) & (1,2) but there's no (4,2)

EXERCISE E

1. Consider the relation (reflexive, symmetric and transitive) on the set { 1, 2, 3, 4, 5} : R = {(1,1), (1,3), (1,5), (2,2), (2,4), (3,1), (3,3), (3,5), (4,2), (4,4), (5,1), (5,3), (5,5)}, determine whether the relation R is reflexive, symmetric or transitive. Explain your answer.

- 2. Let $M = \{0, 1, 2, 3\}$ and defined relation $R = \{(0,1), (0,3), (1,0), (1,1), (2,3), (3,0), (3,2), (3,3)\}$
 - a) Represent the relation R using directed graph
 - b) Determine whether the relation R is reflexive, symmetric or transitive. Explain your answer.

EXERCISE E CONT...

3. Given those three relations on set $A = \{1,2,3,4\}$:

$$R = \{(1,1),(1,2),(1,4),(2,1),(2,2),(3,3),(4,1),(4,4)\}$$

$$S = \{(1,1),(1,3),(1,4),(3,4)\}$$

$$T = \{(1,2),(2,2),(2,3)\}$$

- a) Determine which relations are reflexive. Give your reason.
- b) Determine which relations are not symmetrical. Explain your answer.
- c) Give a reason why S is transitive.

EXERCISE E CONT...

- 4. Given $A = \{1,2,34\}$, $B = \{1,4,6,8,9\}$ where element a is in A is related to element b in B, if and only if $b = a^2$.
 - a) List the element of the relation
 - b) Draw the directed graph for the relation
 - c) Determine whether the relation is reflexive or not.
 - d) Is the relation symmetric? Explain your answer.

EQUIVALENCE RELATIONS

A relation on a set A is called an equivalence relation if it is

- Reflexive
- symmetricand
- transitive.

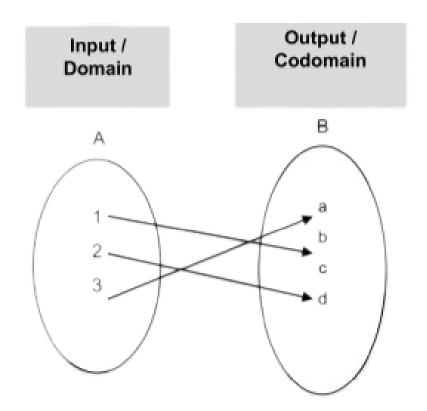
CHAPTER 1: SETS, RELATIONS AND FUNCTION

- 1.3 Carry out functions
 - 1.3.1 Explain composite functions
 - 1.3.2 Explain inverse functions

DEFINE FUNCTIONS

- A function is a relation that has exactly one output for each possible input in the domain.
- A function maps values to one and only one value.

Example:



*All values in the domain has exactly one output only. Therefore, it is a function.

DEFINE FUNCTIONS

NOT A FUNCTION when:

- Any values in the domain has not been mapped to any element from the codomain.
- Any values in the domain have been mapped to more than one element from the codomain

Example:

- The element 1 from the domain has not been mapped to any element from the codomain.
- The element 2 from the domain has been mapped to more than one element from the codomain (a and c).

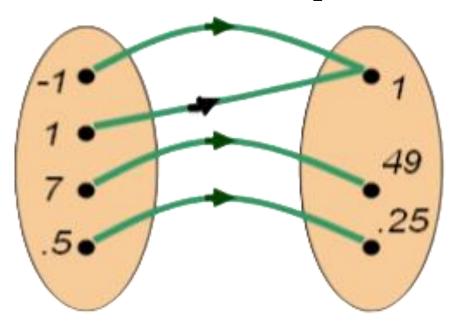
DESCRIBE BASIC CONSTRUCTIONS

Example:

If we write (define) a function as $f(x) = x^2$, then we say 'f of x equals x squared' and we have

$$f(-1) = 1$$
; $f(1) = 1$; $f(7) = 49$; $f(1/2) = 1/4$; $f(4) = 16$ and so on.

This function f maps numbers to their squares (as mapping/graphic below)

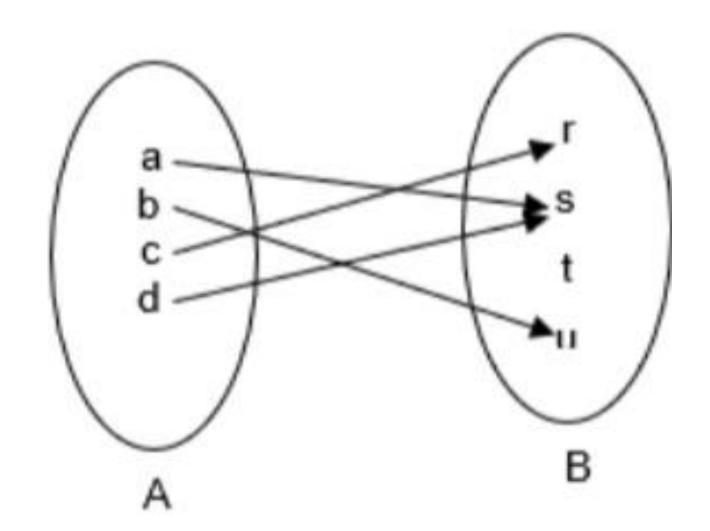


Remark: Functions are sometimes also called

mappings or transformations

IMPORTANT TERMS USED IN FUNCTIONS

- The element in set A is called the **domain**
- The element in set B is called **codomain**
- Unique element of B which is assign to A is called **image / range**



Domain = {a, b, c, d}

Codomain = {r, s, t, u}

Range/Image = {r, s, u}

COMPOSITE FUNCTIONS

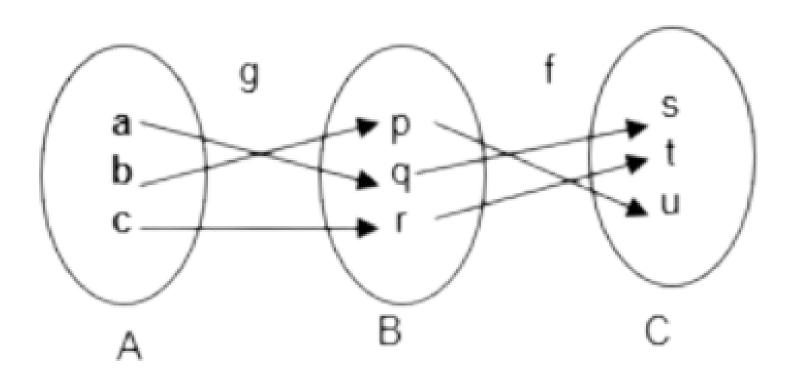
• Let g be a function from the set A to the set B and let f be a function from the set B to the set C. The composition of the functions f and g, denoted by f o g, is defined by

$$(f \circ g)(a) = f(g(a))$$

- In symbol: $g: A \rightarrow B$, $f: B \rightarrow C = f \circ g: A \rightarrow C$
- Composition function happened when codomain B is the domain in $f: B \to C$

Composition function $f \circ g$

$$g: A \rightarrow B, f: B \rightarrow C = f \circ g: A \rightarrow C$$



:
$$f \circ g: \{(a, s), (b, u), (c, t)\}$$

Let f and g be the functions from the set of integers to the set of integers defined by f(x) = 2x + 3 and g(x) = 3x + 2. What is $f \circ g$ and $g \circ f$?

Solution:

$$f \circ g(x) = f(g(x)) = f(3x + 2)$$

= 2 (3x + 2) + 3
= 6x + 4 + 3
= 6x + 7

$$g \circ f = g (f (x)) = g (2x + 3)$$

= 3 (2x + 3) + 2
= 6x + 9 + 2
= 6x + 11

Given $f(x) = \frac{3}{x}$ and fg(x) = 3x. What is and g(x)?

Solution:

Given f (x) =
$$\frac{3}{x}$$

fg (x) = $\frac{3}{g(x)}$ (1)
Given fg (x) = 3x.....(2)
 $\frac{3}{g(x)} = 3x$
 $\therefore g(x) = \frac{3}{3x}$
 $= \frac{3}{3x}$

The function f is defined by f(x) = x - 2. Another function g is such that $gf(x) = \frac{1}{11 - 3x}$, $x \ne \frac{11}{3}$. Find the function g.

Solution:

Given
$$f(x) = x - 2$$
 and $gf(x) = \frac{1}{11 - 3x}$
 $gf(x) = \frac{1}{11 - 3x}$
 $g[f(x)] = \frac{1}{11 - 3x}$
 $g[(x - 2)] = \frac{1}{11 - 3x}$
Let $x - 2 = u$, then $x = u + 2$
 $\therefore g(u) = \frac{1}{11 - 3(u + 2)}$
 $= \frac{1}{11 - 3u - 6}$
 $= \frac{1}{5 - 3u}$
 $\therefore g(x) = \frac{5}{3}$

EXERCISE F

- 1. Given that $f(x) = 3x + x^2$, $g(x) = \frac{x}{2} 4$ and h(x) = x 5. Determine,
 - a) fh(x)
 - b) gh(2)
 - $c) h^{2}(6)$

- 2. Given f(x) = 4x 1 and $g(x) = x^2 + 3$, find
- a)fg(-3)
- b) The value of x when $f^2(x) = 7$

EXERCISE F

- 3. Given that $f(x) = 2x + x^2$ and $g(x) = 1 \frac{x}{4}$
- a) f(3)
- b) fg(-4)

4. Let f and g be functions from the positive integers to the positive integers defined by equations f(n) = 2n + 1, g(n) = 3n - 1. Find the compositions $f \circ f$, $g \circ g$, $f \circ g$, and $g \circ f$.

EXERCISE F

5. The function f and the composite function gf are defined as follows. Find the function g.

a)
$$f(x) = x + 1, gf(x) = \frac{3}{x-2}, x \neq 2$$

b)
$$f(x) = 3x + 2$$
, $gf(x) = 9x^2 + 9x + 2$

6. Given the functions f(x) = 3x + 7 and fg(x) = 22 - 3x, find gf(x).

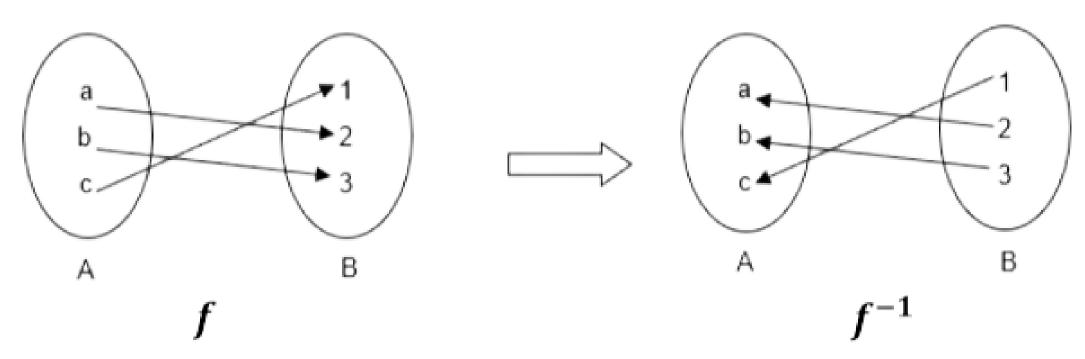
INVERSE FUNCTION

- If a function f from A to B is a one-to-one, then there is a function from B to A that "undoes" f, that is: it sends each element of B back to the element of A that it came from via f.
- The function is invertible if a function f is Onto function and at the same time it also one-to-one function.
- The inverse function of f is denoted: f^{-1} .

Let f be the function from $\{a, b, c\}$ to $\{1, 2, 3\}$ defined by f(a) = 2, f(b) = 3, and f(c) = 1. Is f invertible, and if it is, what is its inverse?

Solution:

The function f is invertible because it is a one-to-one. The inverse function f^{-1} reverse the correspondence given by f, so $f^{-1}(2) = a$, $f^{-1}(3) = b$, and $f^{-1}(1) = c$. This illustrated in figure below.



Given the function $f(x) = \frac{x+8}{x-6}$, $x \ne 6$. Find the value $f^{-1}(3)$.

Solution:

Let
$$y = f^{-1}(3)$$

$$f(y) = 3$$

Substitute the coefficient x with y into f(x)

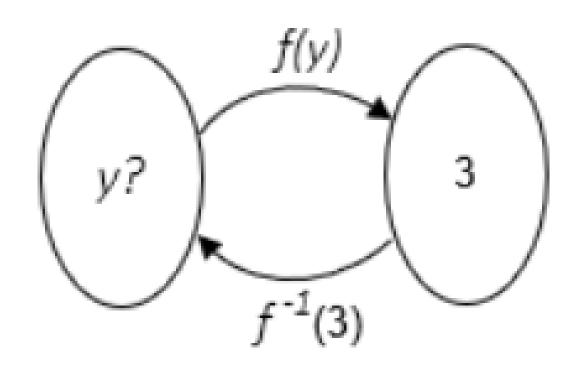
$$\frac{y+8}{y-6} = 3$$

 $y+8=3(y-6)$; $y+8=3y-18$

Find the value of **y**;

$$3y - y = 8 + 18$$

 $2y = 26$; $y = 13$
 $y = f^{-1}(3) \rightarrow f^{-1}(3) = 13$



Given
$$f(x) = 2 + x^2$$
 and $g \circ f(x) = \frac{1}{x^2}$
Find $g(x)$?

Step 2, substitute $f^{-1}(x)$ into gf(x)

$$\therefore gf(f^{-1}(x)) = \frac{1}{(\sqrt{x-2})^2}$$

$$g(x) = \frac{1}{x-2}$$

Solution:

Step 1, find
$$f^{-1}(x)$$

Let
$$f^{-1}(x) = y$$

$$x = f(y)$$

$$x = 2 + y^2$$

$$y^2 = x - 2$$

$$y = \sqrt{(x-2)}$$

$$\therefore f^{-1}(x) = \sqrt{(x-2)}$$

TIPS:

1- Find
$$f^{-1}x$$

2-Substitute
$$f^{-1}x$$
 into $gf(x)$

EXERCISE G

1. Given $g = \{(1,b), (2,c), (3,a)\}$, a function from $X = \{1, 2, 3\}$ to $Y = \{a, b, c, d\}$ and $f = \{(a,x), (b,x), (c,z), (d,w)\}$, a function from Y to $Z = \{w, x, y, z\}$, write $f \circ g$ as a set of ordered pairs and draw the arrow diagram of $f \circ g$.

2. Given that the function f(x) = 4x + 1, find a formula for $f^{-1}(x)$.

EXERCISE G CONT...

- 3. Given that the functions g(x) = x 2 and $f(g(x)) = x^2 4x + 8$. Find:
 - a) g(8)
 - b) The values of x if f(g(x)) = 13
 - c) The function f
 - d) $g^{-1}(-1)$

EXERCISE G CONT...

- 4. Let f(x) = 2x + 1 and $g(x) = 3x^2 4$. Find:
 - a) $(f \circ g)(x)$
 - b) $(g \circ f)(-2)$
 - d) $f^{-1}(x)$
- 5. The function f and g are defined by $f: \mapsto 3x, g(x) \mapsto x + 2$
 - a) Find an expression for $(g \circ f)(x)$
 - b) Show that $f^{-1}(18) + g^{-1}(18) = 22$

EXERCISE G CONT...

6. The information below defines the functions h and g

$$h: x \rightarrow 2x - 3$$

$$g: x \to 4x - 1$$

Find
$$gh^{-1}(x)$$