
C h a p t e r 2

2.1 Carry out Boolean Function

2.1.1 Carry out Boolean Function

2.1.2 Use identities of Boolean algebra

2.2 Construct Logic Gates

2.2.1 Define Logic Gates

A Boolean function is decribed by an algebraic

expression called Boolean expression which consists of

binary variables, the constants 0 and 1, and the logic

operation symbols.

Example:

F (A, B, C, D) = A + BC + ADC

Boolean Function

• Also known as

output

Boolean

Function

• The Boolean sum, denoted by + or by OR

Example:

0 + 0 = 0

0 + 1 = 1

1 + 0 = 1

1 + 1 = 1 (the highest output cannot exceed 1)

• It can be completely described using a truth

table. For example, if we have two variables

as the input (X and Y) and one output

(denoted as F), the truth table as shown

below:

• The Boolean product, denoted by • or by

AND, has the following values:

Example:

0 • 0 = 0

1 • 1 = 1

• It can be completely described using a

truth table. For example, if we have two

variables as the input (X and Y) and

one output (denoted as F), the truth

table as shown below:

• The complement of an element also read

as NOT. The NOT operation is most often

designated by a prime mark (𝑿′) . It is

sometimes indicated by an overbar (𝑿).

• It can be completely described using a

truth table. For example, if we have one

variable as the input (X), the

complement of the input X are shown

below:

′

Find the value of

1.0 + (0 + 1)

Solution:

By using the definition of Boolean sum, Boolean product and complement;

1.0 + (0 + 1)

= 0 + (1)

= 0 + 0

= 0

Three inputs

The number of rows in the truth table is 2ⁿ where n is the number of input/variables.

Example:

If we have two inputs (A and B), therefore, we will have 2² = 4 rows. If we have three

inputs(A, B and C), therefore we will have 2³ = 8 rows.

Look at the picture below:

Two inputs

Find the values of the Boolean function represented by

𝐹 (𝑥, 𝑦, 𝑧) = 𝑥𝑦 + 𝑧′

Solution:

We need to construct the truth table:

′ ′

Find the truth table 𝑇 for the equivalent Boolean

expression:

𝐹(𝐴, 𝐵, 𝐶) = 𝐴𝐵𝐶′ + 𝐵𝐶′ + 𝐴′𝐵

Simplify the following Boolean expression by using the suitable identities

(refer to the table):

𝐹 (𝐴, 𝐵) = 𝐴 + 𝐴𝐵

Solution:

𝐹 (𝐴, 𝐵) = 𝐴 + 𝐴𝐵

= (𝐴 + 𝐴𝐵) + 𝐴𝐵

= 𝐴 + 𝐴𝐵 + 𝐴𝐵

= 𝐴 + 𝐵(𝐴 + 𝐴) Factorizing the common factor B

= 𝐴 + 𝐵(1)

= 𝐴 + 𝐵

Simplify the following Boolean expression by using Boolean identities (refer

to the table);

𝐹 𝐴, 𝐵, 𝐶 = (𝐴 + 𝐵) (𝐴 + 𝐶)

Solution:

(𝐴 + 𝐵) (𝐴 + 𝐶) = 𝐴𝐴 + 𝐴𝐶 + 𝐵𝐴 + 𝐵𝐶 Expansion of the bracket

= 𝐴 + 𝐴𝐶 + 𝐵𝐴 + 𝐵𝐶

= 𝐴(1 + 𝐶) + 𝐵(𝐴 + 𝐶) Factorizing the common factor A,B

= 𝐴(1) + 𝐵(𝐴 + 𝐶)

= 𝐴 + 𝐴𝐵 + 𝐵𝐶 Expansion of the bracket

= 𝐴(1 + 𝐵) + 𝐵𝐶 Factorizing the common factor A

= 𝐴(1) + 𝐵𝐶

= 𝐴 + 𝐵𝐶

Simplify the following Boolean expression:

a)C + BC

b)AB(A + B)(B + B)

c) (x + y) (xz + xz′) + xy + y

d) x (x + y) + (y + xx)(x + y)

A logic gate is a building block of a digital circuit. Most

logic gates have two inputs and one output and are

based on Boolean algebra.

At any given moment, every terminal is in one of the two

binary conditions:

• Low (0)

• High (1)

Performs the Boolean

NOT operation (refer

to the slide no. 7).

The Inverter

Performs the Boolean

AND operation (refer

to the slide no. 4).

The AND Gate

Performs the Boolean

OR operation (refer to

the slide no. 5).

The OR Gate

Performs the Boolean NOT-AND

operation. It produces a LOW output (0)

when all inputs are HIGH (1). For a 2-

input gate, the truth table is:

Performs the Boolean NOT-OR

operation. It produces a LOW output (0)

when ANY input is HIGH (1). For a 2-

input gate, the truth table is:

The NAND Gate The NOR Gate

2.2 Construct Logic Gates

2.2.1 Construct combination of Gates

2.3 Customize minimization of circuits

2.3.1 Define minimization of circuits

2.3.2 Use the Karnaugh Map method in two or

three variables

2.3.3 Apply the Karnaugh Map in minimization of

the circuits

• In a Combinational Logic Circuit, the output is dependent at

all times on the combination of its inputs.

• Combinational Logic Circuits are made up from basic logic

NAND, NOR and NOT gates that are “combined” or connected

together to produce more complicated switching circuits.

• The NAND and NOR gates are also known as “universal”

gates.

• The three main ways of specifying the function of a

combination logic circuit are:

• Boolean algebra

• Truth table

• Logic Diagram (graphical representation of logic circuit)

A logic circuit diagram uses the graphical representation or description

of logic gates to represent a logic expression. An example of logic

circuit diagram, shows below with three inputs (A, B, and C) and

one output (Y).

• Express the output Y as a Boolean

expression in the inputs A, B and C

for the logic circuit below:

a)

b)

2. Draw a logic circuit

corresponding to the Boolean

expression:

a) Y = AB+𝐴𝐶

b) Y=(x + y)𝑥

• Find the output of the given circuits:

a)

b)

2.Draw a logic circuit corresponding to the Boolean expression:

a) Y = (A+B)C

b) Y = 𝐴 + 𝐵𝐶 + 𝐷

c) A + BC + B

d) Y = A′B + A + C

• Inputs: A and B; Output:𝐴𝐵

*AND gate means the product for

BOOLEAN operation

• The truth table:

• BOTH low input (0) by using AND

gate and inverter generate HIGH

output (1)

For any of the four possible input conditions, we can generate a HIGH output (1)

by using an AND gate and inverter with the appropriate inputs to generate the

requires AND product. Refer to the FOUR examples below:

• Inputs: A and B; Output:AB

*AND gate means the product for

BOOLEAN operation

• The truth table:

• ONE low input (0) by using AND

gate and inverter generate HIGH

output (1)

Example 1 Example 2

• Inputs: A and B; Output:AB

*AND gate means the product for

BOOLEAN operation

• The truth table:

• ONE low input (0) by using AND gate

and inverter generate HIGH output

(1)

• Inputs: A and B; Output:AB

*AND gate means the product for

BOOLEAN operation

• The truth table:

• BOTH high input (1) by using AND

gate and inverter generate HIGH

output (1)

Example 3 Example 4

Design a logic circuit that has three inputs, A, B, and C, and whose output will

be HIGH only when a majority of the inputs are HIGH.

Solution:

Step 1

Set up the truth table. On the basis of the problem statement, the output 𝐗

should be 1 whenever two or more inputs are 1; for all other cases, the

output should be 0.

Step 2

Write the AND term for each case where the output is a 1. There are four such cases.

Refer to the TRUTH TABLE above.

Step 3. Write the sum-of-products expression for the output.

X = ABC + ABC + ABC + ABC

Step 4. Simplify the output expression.

This expression can be simplified in several ways. Perhaps the quickest way

is to realize that the last term 𝐴𝐵𝐶 has two variables in common with each of

the other terms. Thus, we can use the 𝐴𝐵𝐶 term to pair with each of the

other terms. The expression is rewritten with the 𝑨𝑩𝑪 term occurring

three times.

X = ABC + ABC + ABC + ABC + ABC + ABC

Factoring the appropriate pairs of terms, we have

X = BC(A + A) + AC(B + B) + AB(C + C)

Each term in parentheses is equal to 1, so we have

X = BC + AC + AB

Step 5. Implement the circuit for the final expression.

Since the expression is in SOP(Sum of product) form, the circuit consists of a

group of AND gates working into a single OR gate.

The process of simplifying the algebraic

expression of a Boolean function is

called minimization. It is clear from

the following image that the

minimized version of the expression

takes a less number of logic gates and

also reduces the complexity the circuit

substantially.

By simplifying the output using

Boolean identities:

ҧ𝐴 ҧ𝐶 + ҧ𝐴𝐷 ҧ𝐶𝐵 + BD

= ҧ𝐴(ҧ𝐶 + D) + 𝐵(ҧ𝐶+D)

= (ҧ𝐴 + B)(ҧ𝐶+D)

Therefore, we can draw new LOGIC

DIAGRAM as below:

ഥ𝑨ഥ𝑪 + ഥ𝑨𝑫 ഥ𝑪𝑩 (ഥ𝑨 + 𝐁)(ഥ𝑪+D)

D

KARNAUGH MAPS

• Used to facilitate converting between Truth Tables

and Boolean Expressions

• Make deriving a Boolean Expression much easier

because they are graphical

• Map TWO or MORE inputs to one output

• Number of cells = 2ⁿ. Example: if we have 2 inputs,

2² = 4 cells

Example 1: K Map of 2 variables/inputs

Example 2: K Map of 3 variables/inputs

RULE 1:

Any cell containing a zero cannot

be grouped.

RULE 2:

Groups must contain 2n cells (n

starting from 1).

There are 7 rules used for the simplication of Boolean expressions. Refer to the explanation

below:

WRONG GROUPING WRONG GROUPING

RULE 3:

Grouping must be horizontal

or vertical, but must not be

diagonal.

RULE 4:

Groups must be covered as

largely aspossible.

RULE 7:

The leftmost cell/cells can be

grouped with the rightmost

cell/cells and the topmost

cell/cells can be grouped with

the bottommost cell/cells.

RULE 6:

Groups may overlap but there

should be as few groups as

possible.

RULE 5:

If 1 of any cell cannot be grouped with any other cell, it

will act as a group itself.

Minimize the following Boolean expression by using K-map.

F(A,B,C)=ABC+ABC’+AB’C

Solution:

First, we need to SOP (Sum of Product) for the Boolean expression given:

F(A,B,C)= ABC + ABC’ + AB’C

*OTHER THAN THAT, WE PUT 0 IN THE TABLE.

Therefore; F(A,B,C) = AC + AB

Red circle Blue circle

• Here is a truth table for a specific three input

logic circuit.

Draw a K Map according to the values found in the

truth table.

2. Use Karnaugh maps to find the minimal form for each expression.

a) xy + xy’

b) xy + x’y + x’y’

c) xy’ + x’y’

d) xyz’ + xy’z + xy’z’ + x’yz + x’yz’ + x’y’z

e) xyz + xyz’ + x’yz + x’y’z

f) xyz + xyz’ + xy’z + xy’z’ + x’y’z

3. Design a minimal AND-OR circuit which yields the following truth

table:

𝑇 = [𝐴 = 00001111, 𝐵 = 00110011,

𝐶 = 01010101, 𝐿 = 10101001]

4. Redesign the following circuit so that it becomes a minimal

AND-OR circuit

a)

b)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40

