EQUAL SETS

The set are equal if and only if their number of elements and the member of elements are exactly same.

Example of equal sets: $A = \{5,6,7\}, B = \{7,5,6\}, C = \{5,5,6,6,7,7\}$

SPECIAL SYMBOLS FOR SETS

N =the set of **positive integers** : 1, 2, 3,

Z = the set of integers :, -2, -1, 0, 1, 2,

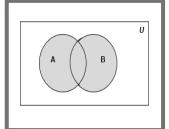
Q = the set of rational numbers

 \mathbf{R} = the set of **real numbers**

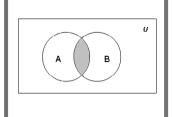
C = the set of **complex numbers**

OPERATION ON SETS

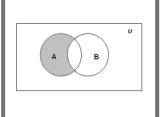
 $A \cup B$



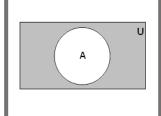
 $A \cap B$



A - B



A'

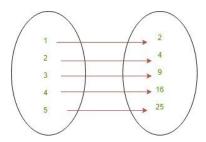


RELATION REPRESENTATION

GRAPHICALLY/ ARROW DIAGRAM

Example:

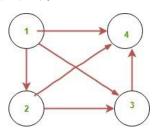
 $R = \{(1, 1), (2, 4), (3, 9), (4, 16), (5, 25)\}$



DIGRAPH (DIRECTED GRAPH)

Example:

 $R = \{(1,2), (1,3), (1,4), (2,3), (2,4), (3,4)\}$



MATRICES

Example:

Suppose that $A = \{1,2,3\}$ and $B = \{1,2\}$. $R = \{(2, 1), (3,1), (3,2)\}$

In matrix form;

$$M_R = \begin{bmatrix} 0 & 0 \\ 1 & 0 \\ 1 & 1 \end{bmatrix}$$

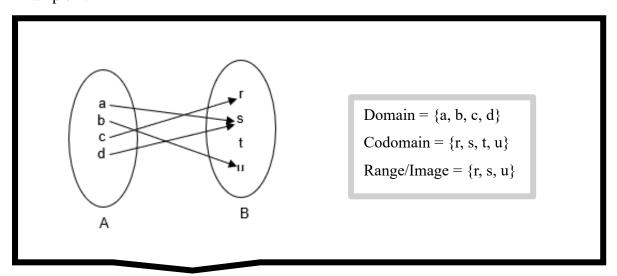
PROPERTIES OF RELATIONS

*A relation on a set A is called an **equivalence relation** if it is *reflexive*, *symmetric* and *transitive*.

IMPORTANT TERMS USED IN FUNCTIONS

- The element in set A is called the *domain*
- The element in set B is called *codomain*
- Unique element of B which is assign to A is called *image / range*.

Example 1:



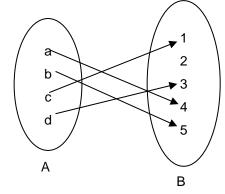
ONE-TO-ONE FUNCTIONS

Example 2:

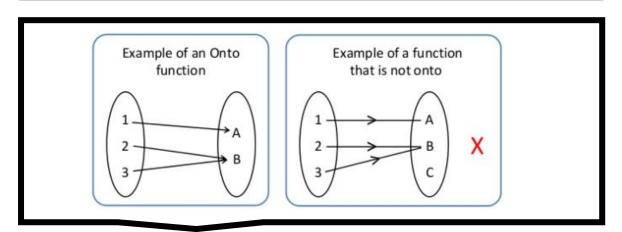
Determine whether the function f from $\{a, b, c, d\}$ to $\{1, 2, 3, 4, 5\}$ with f(a) = 4, f(b) = 5,

f(c) = 1 and f(d) = 3 is one-to-one.

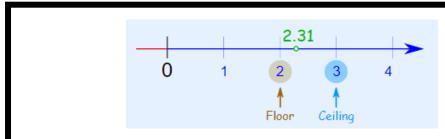
Solution: The function *f* is one-to-one.



ONTO FUNCTION



DESCRIBE FLOOR AND CEILING FUNCTIONS



Notes: [2.31] = 2

[2.31] = 3

Another example: Solve [0.5 + [1.3] - [-1.3]]

$$= [0.5 + 2 - (-1)]$$

= 3