
GRAPH TERMINOLOGY

SUMMARY OF GRAPH TERMINOLOGY IN GRAPH THEORY

The size of a graph is the number of its edges.

The degree of a vertex written deg(v) is equal to the number of edges which are incident on v

The sum of the degrees of the vertices of a graph is equal to twice the number of edges

The vertex v is said to be even or odd (parity) according as deg(v) is even or odd

A vertex v is isolated if it is does not belong to any edge

A vertex with degree 1 is called a leaf vertex

The incident edge of vertex with degree 1 is referred as a pendant edge

A path is the sequence of connected vertices.

A simple path is a path where the vertices are only passed through once

A trail is a path where each edge is traveled once, meaning that there are no repeated edges (all edges are distinct)

The length of the path is the number n of edges that it contains

The distance between two vertices is described by the length of the shortest path that joins them

A cycle / simple cycle is a closed path with at least 3 edges, and no repeated vertices and

An acyclic is a graph that has no cycles in it

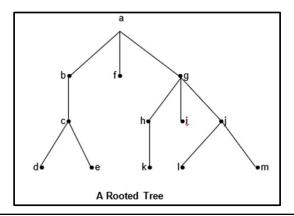
A closed path or circuit is a path that starts and ends at the same vertex

A graph is called planar if it can be drawn in the plane without any edges crossing each other

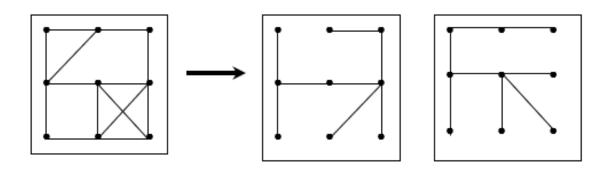
EULER PATH, EULER CIRCUIT, HAMILTON PATH, HAMILTON CIRCUIT

Euler path -A connected multigraph has an **Euler path** if and only if it has **exactly two vertices of odd degree**.

Euler Circuit- A connected multigraph has an Euler circuit if and only if every vertex have even degree.



Hamilton path-A Hamilton path is a simple path in a graph G that passes through every vertex exactly once.


Hamilton Circuit-A Hamilton circuit is a simple circuit in a graph G that passes through every vertex exactly once.

EXAMPLE OF TREES

- The root is a.
- The parent of h,i and j is g.
- The children of b is c. The children of j are I and m.
- h, i and j are a sibling.
- The ancestor of e are c, b and a.
- The descendants of b are c, d and e.
- The internal vertices are a, b, c, g, h and j. (vertices that have children)
- The leaves are d, e, f, i, k, I and m. (vertices that have no children)

SPANNING TREES

MINIMAL SPANNING TREES

PRIM'S ALGORITHM

KRUSKAL ALGORITHM