Meaning of proposition

A proposition (or statement) is a sentence that is either True or False.

Example of proposition

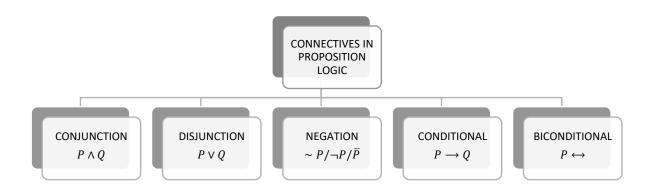
- •10÷2=4
- •5 is an even number.
- •Today is Wednesday

Example of non-proposition

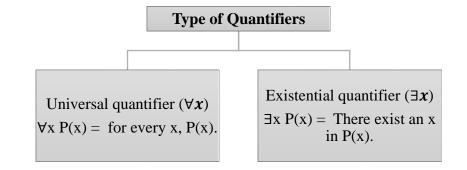
- •Where do you live?
- •Please answer the
- question correctly.
- $\bullet x < 10$

TWO PROPOSITIONS			
p	q		
Т	Т		
T	F		
F	Т		
F	F		

THREE PROPOSITIONS			
p	q	r	
T	T	Т	
T	T	F	
T	F	Т	
T	F	F	
F	Т	Т	
F	T	F	
F	F	Т	
F	F	F	



• Two statement forms are called logically Logical equivalence equivalent (\equiv) if and only if they have same truth value in every possible situation. • A proposition P(p, q, r,) is a *tautology* if it contains only T in the last column of its truth **Tautology** table. • A proposition P(p, q, r,) is a *contingency* if Contigency it contains both **T** and **F** in the last column of its truth table. • A proposition P(p, q, r,) is a *contradiction* Contradiction if it contains only F in the last column of its truth table.



SOME EXAMPLE OF QUANTIFIERS

Let the universe be the set of airplanes and let F(x, y) denote "**x** flies faster than **y**". Write each proposition in words.

a) $\forall x \forall y F(x, y)$ "Every airplane is faster than every airplane"

b) $\forall x \exists y F(x, y)$ "Every airplane is faster than some airplane"

c) $\exists x \forall y F(x, y)$ "Some airplane is faster than every airplane"

d) $\exists x \exists y F(x, y)$ "Some airplane is faster than some airplane"

VALIDITY OF ARGUMENT

An argument is said to be *valid* if Q is true whenever all the premises P_1 , P_2 , ..., P_n are true.

TEST THE VALIDITY USING TRUTH TABLE.

Example:

Show that the following argument is valid or fallacy.

a)
$$p \rightarrow q$$

Solution:

p	q	p o q	р	q
Т	Т	Т	Т	Т
1	1	1	1	•
Т	F	F – ignore!	T	-
F	T	T	F – ignore!	_
F	F	T	F – ignore!	-

RULE OF INFERENCE	TAUTOLOGY	NAME
$\begin{array}{c} p \rightarrow q \\ \hline p \\ \hline \vdots q \end{array}$	$[p \Lambda (p o q)] o q$	Modus ponens
$egin{array}{c} p ightarrow q \ \hline \neg \ q \ \hline ightarrow \neg \ p \ \end{array}$	$[\neg \ q \ \Lambda \ (p o q)] o \neg \ p$	Modus tollens
$\begin{array}{c} p \rightarrow q \\ \underline{q \rightarrow r} \\ \vdots p \rightarrow r \end{array}$	$[(p \to q) \Lambda (q \to r)] \to (p \to r)$	Hypothetical syllogism
$ \begin{array}{c} p V q \\ \neg p \\ \hline $	$[(p \lor q) \land \neg p] \to q$	Disjunctive syllogism
$\frac{p}{\therefore p \vee q}$	$m{p} o (m{p} \ m{V} \ m{q})$	Addition

TEST THE VALIDITY USING TABLE RULES OF INFERENCE.

Alice is mathematics major. Therefore, Alice is either mathematics major or a computer science major.

Solution:

Identify the premise:

p: Alice is mathematics major.

q: Alice is a computer science major

Check the given statement:

p (Alice is mathematics major)

∴p V q

(Therefore, Alice is either mathematics major or a computer science major)

Refer to the rules of inference:

Addition